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ABSTRACT

A high-resolution, multi-level, primitive equation ocean model is used to examine the response
of an idealized, flat-bottomed, eastern boundary oceanic regime on a beta-plane to both steady
and seasonally-varying climatological wind forcing. The focus of the study is the California
Current System along the coastal region, from 35° N to 45° N, off the Western United States.
With steady equatorward wind forcing, a surface equatorward current and poleward undercurrent
develop. Eddies form around days 60 and 70 with initial development in the northern region of
the domain. The strong meandering current continues to grow throughout the 360 days of model
time and can produce eddies that have wavelengths up to ~ 200 km and can propagate at least
~200 km offshore. When the alongshore component of the temporally averaged seasonally-
varying chimatological wind forcing is used, there is a weak poleward undercurrent and
equatorward surface current. There is weak upwelling and very little eddy activity with the eddies
only propagating to ~100 km offshore. When alongshore component of the time-dependent wind
forcing with spatial variability in latitude is used, a surface equatorward jet, poleward
undercurrent and eddies are generated. The eddies form throughout the domain in this
experiment due 10 a competition between the [-plane effect and the continuous and stronger
equatorward wind forcing in the southern portion of the domain. The eddies in this experiment
propagate at least ~150 km from shore. When the full climatological winds are used, there is
again a surface equatorward jet and poleward undercurrent generated. The surface currents and
eddies reach speeds of ~65-85 cm s-1. The wavelengths of the eddies are ~300 km and can
propagate to ~350 km offshore. These results are closest to the observed structure of the
California Current System. Therefore, 1 conclude that both temporal and spatial varability in
wind forcing are cntical elements in the formation and maintenance of currents and eddies in the

California Current System.
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I. INTRODUCTION

The California Current System is a complex system of eddies and meandenng jets
superimposed on a mean equatorward flow extending to ~1000 km from the coast. There
have been several major experiments including Coastal Upwelling Expeniments (CUE-]
and CUE-II), Coastal Ocean Dynamics Experiment (CODE), Ocean Prediction through
Observations, Modeling and Analysis (OPTOMA), and Coastal Transition Zone (CTZ),
designed to better understand this eastern boundary current. The purpose of this study is
to explain the generation of the eddies and filaments found in the above experiments.
Batteen e al. (1989) demonstrated how a steady equatorward wind is able to generate a
reasonable current, undercurrent and eddy field with a full primitive equation (PE) model.
The process-oriented study described here extends the work of Batteen ef al. (1989) by
using seasonal rather than steady winds to force the same PE model. These winds are
then averaged into different components to understand the role these components play in
the generation of mesoscale features.

This thesis is organized as follows. Chapter II describes the region being modeled
as well as the type of winds used to force the model. A brief look at some numerical
models used in the past is at the end of this chapter. In Chapter III there is a description
of the model and the design of the experiments. The results of the model experiments are

presented in Chapter IV. A summary is provided in Chapter V.




II. BACKGROUND

A. REGIONAL DESCRIPTION

Oceanic flow off California is classified as an eastern boundary current. It was
described as a broad, weak, equatorward flow extending to ~1000 km from the coast
(Sverdrup et al., 1942). Source water is carried eastward in the West Wind Drift of the
North Pacific Gyre (Lynn and Simpson, 1987). This water forms a relatively cold, low
salinity current along the west coast of North America. The principal equatorward flow is
above 1000 meter depth with the bulk of the average 11.9 Sv transported equatorward
occurring within 1000 km of the coast (Wooster and Reid, 1963). Numerous eddies and
irregularities in the flow as well as the existence of coastal countercurrents have been
observed (Wooster and Reid, 1963). Equatorward winds in the summer can cause
equatorward currents and strong up++lling while a coastal, poleward countercurrent with
no upwelling can be present in the winter (Reid e7 al., 1958). Non-seasonal variations in
upwelling appear to be related to wind changes (Reid, 1960).

The California Current System (CCS) can be broken into four yeneral currents the
California Current (CC), the California Countercurrent (CCC), the California
Undercurrent (CUC), and the Southern California Countercurrent (SCC). Since only the
first three are included in the area of this modeling study, the SCC will not be further
discurced.

The equatorward CC has a core that is within 100-200 km of the coast and reaches
a depth of nearly 300 m (Chelton, 1984). The average current speeds are less than 25 cm
s-! (Reid and Schwartzlose, 1962). Core speeds often in excess of 75 cm s-! have been

observed (Brink eral., 1991). .




The poleward CCC is observed inshore of the CC and is characterized by its
seasonal variability (Chelton, 1984; Hickey, 1979) The flow of the CCC is equatorward
from February through September and poleward from November through Februury
(Hickey, 1979). When flowing poleward on the surface, it is called the Davidson Current
(Chelton, 1984). Observations north of Cape Mendocino show that the flow can be either
poleward or equatorward during the same month (Chelton er al., 1988).

The CUC flows poleward o;er the continental shelf (Hickey, 1979, Reid, 1962).
Its core has a mean velocity greater than 15 cm s°! with instantaneous speeds of up to 40
cm s-1 (Hickey, 1979, Reid, 1962). The CUC is 20 - 70 km wide and vertically extends ~
300 meters with its center 200 - 250 meters below the surface (Hickey, 1979, Reid, 1962).

The colder temperatures found near the coast and observations of the CCC below
200 m depth were originally attnibuted to a classical two-dimensional upwelling system
closely related to the winds (Smith, R. L., 1968). This simple one-celled circulation of
upwelling was later disputed by observations during CUE-] and CUE-2, where the
vertical distributions of temperature, chlorophyll and optical parameters cortradicted the
simple two-dimensional theory (Huyer, 1983).

The CODE program in 1981-1982 was designed to study and identify those
dynamical processes which govern the wind-driven motion of water over the continental
shelf (Beardsley and Lentz, 1987). Kosro (1987) used the shipboard Doppler acoustic log
(DAL) to show that near-surface currents often deviated substantially from classical two-
dimensional wind-driven upwelling. DAL results indicated a close association between the
complex temperature structures in satellite imagery and the presence of vigorous current
structures including squirts, eddies, and countercurrents, (Kosro, 1987). The OPTOMA
program further showed the persistence of the eddy field and its potential for drawing the

cold waters offshore (Mooers and Robinson, 1984) The CTZ program was the next




major experiment designed to help understand the complex CCS. A major portion of this
program was dedicated to resolving what caused the filaments (cold surface features)
found during CODE and OPTOMA (Brink and Cowles, 1991). Drifiers showed core
speeds often in excess of 75 cm s~1 in the generally southward meandering jet during July
to December 1988 (Brink ef al., 1991). When the winds were poleward and the Davidson
Current was present, there was little eddy activity and no coherent flow or filaments were
observed (Kosro et al., 1991).

CTZ was designed to study filaments. Yet in the EBC region many large-scale
eddies were present. The newest program, "Weakly Nonlinear Accelerated Research
Initiative”, sponsored by the Office of Naval Research (ONR), is designed to try to
understand more about the eddies in the CCS. Of particular interest is the question of the

role of wind forcing in generating eddies in the CCS.

B. CLIMATOLOGICAL WINDS

The atmospheric circulation off the west coast of North America is dominated by
the North Pacific High, which varies seasonally in position and strength (Huyer, 1983). In
February the High is centered near 280N, 130°W, while in August it migrates to its most
northward location of 380N, 150°W (Huyer, 1983). Nelson {1977) showed that the
strongest equatorward wind stress migrates from ~25°N in the winter to ~380N in the
summer. This shifting of the High causes the winds to split at ~400N near Cape
Mendocino during the winter. The northward winds blow around the eastern side of the
Aleutian Low, north of the cape, while southward winds blow around the North Pacific
High, south of the cape. In the summer, the winds are predominately southward on both

sides of the cape (Nelson, 1977).




Smith (1968) showed that open ocean upwelling can occur if there is positive wind
stress curl away from the boundary of the coast. Bakun and Nelson (1991) found that the
large-scale wind stress curl in the CCS is predominately cyclonic near the coast and
anticyclonic offshore. As a result, Ekman convergence dominates near the coast, while
Ekman divergence dominates offshore. There is a transition zone located approximately
200 - 300 km off the coast between the cyclonic and anticyclonic curl which is associated
with the offshore maximum of alongshore wind stress (Bakun and Nelson, 1991).

There are two local maximums in the wind stress curl. The first is yearlong and
associated with the Southern California Bight. The second extends south from Cape
Mendocino to past Monterey Bay and occurs during the fall and winter (Bakun and

Nelson, 1991).

C. NUMERICAL MODEL STUDIES

Numerical models have been used to help unravel some of the mysteries
concerning the causes and behavior of the phenomena observed in the CCS. They can
give the solution to complicated, non-linear problems that are intractable with standard
analytical methods (Allen, 1980).

Two-dimensional models, which ignored alongshore vanability, were a first
attempt at using the computer to generate results that were reasonable when compared to
available observations. For example, the two-layered stratified models discussed by Allen
(1980) with a flat bottom produced a coastal jet in the upper layer and a countercurrent in
the lower layer. When a shelf and slope topography were added to the same model,
results showed that the countercurrent strength would be significantly reduced, consistent

with available observations.




As computers have advanced in speed and power, three-dimensional models have
replaced the two-dimensional models and can be run with results obtained in a reasonable
amount of time. For example, for eastern boundary current regions, two-layer and
continuously stratified three-dimensional models have been used by Suginohara (1977) to
study the effects of alongshore variations in wind stress. The results have been shown to
be consistent with forced coastal trapped wave theories. The results also show a
pycnocline upwelling near the coast and the formation of fronts, consistent with available
upwelling observations (e.g., Curtin, 1979).

None of the models mentioned above simulated eddies, jets or filaments.
Haidvogel er al. (1991) was able to produce these results but used no wind furcing.
Batteen er al. (1989) had the first eastern boundary current model to simulate eddies and
jets with steady wind forcing, followed by McCreary er al. (1991), who used the same
type of wind forcing.

In this study, the model used by Batteen er al. (1989) is extended to include
seasonal rather than steady wind forcing. The seasonal winds are then averaged into
different components to understand the role each component plays in the generation of

eddies, jets and filaments.




I11. MODEL DESCRIPTION

The numerical model used in this research was developed by Haney (1974,1985)

. for a closed basin, and modified by Batteen (1989) and Batteen er a/. (1989) for use in
limited area eastern boundary current (EBC) regions with open borders on the northern,
western and southern borders. It is explained in detail in Batteen er al. (1989) and will be

summarized below.

A. MODEL EQUATIONS
The model is a multi-level, primitive equation (PE) model, and uses the
hydrostatic, rigid lid, B-plane and Boussinesq approximations. The governing equations

are the following:

a Momentum Equations:
% =§Z—‘z+ﬁv— A,,V“u+K,,—g—::+ 8, (u) (3.1)
v _-13p . v
—=——t 3+ fu-A,Vv+K, —+6, 3.2
a gy oy A R nt o) G2
b. Continuity Equation:
: u
W= —+—)d 33
LS 3% (33)

c. Vertically Integrated Hydrostatic Equation:

1 0
p=[ reds-— [ | [eds ) (3.4)
d. Equation of State:
p=p,(1-a(T-T))) (3.5)
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€. Thermodynamic Equation:
dar a’T
Z=-AHV‘T+KH;-?+Q.;+5¢(T)' (3.6)

In the above equations, t is time, (x,y,z) is a right-handed Cartesian coordinate system
with x pointing eastward toward shore, y pointing northward alongshore, and z upward.
The velocity components are (u,v,w), respectively. T is temperature, p is density and p' is
the departure from the vertically averaged pressure. £ is a dummy variable in equations
(3.3) and (3.4). The density function is assumed to be a function of temperature only in
equation (3.5). This is consistent with the region being modeled (Lynn e7 al., 1982).
Salinity may be a good tracer for water masses in the CCS (Huyer and Kosro, 1987),
however it is not essential for a zero-order description since there are no major sources or
sinks of salinity in this region of the CCS. In equation (3.6), Q, = &5/p,Cé& is the

heating due to solar radiation, where

S =5 (Re¥ +(1-R)ed). (3.7)

S, is the downward flux of the solar radiation at the surface, R =.62 is the fraction of
solar radiation absorbed in the upper few meters (z; = 1.5 m) and (1- R)=.38 is the
fraction that penetrates to somewhat deeper levels (z = 20 m) as given by Paulson and
Simpson (1977). The vertical turbulent mixing of heat and momentum by a dynamic
adjustment mechanism is represented by the terms J&,(w), J,(v) and &,(7). This
adjustment, a generalization of the convective adjustment mechanism, is based on the
assumption of a critical Richardson number, and it serves to maintain dynamic stability in

the water column (Adamec er al., 1981).




The boundary conditions at the top (z = 0)of the mode] are:
ol

K —=7r 38
" = Tle, (3.82)
) &
K —=1¢ 3.8b
-5 =7l (3.8b)
ar
KH'Z:; = —'QB (380)
w=0 (3.8d)
and at the bottom (z = - H) they are
Km—%l = Cp(u* +v*)* (ucosy - vsin y) (3.9a)
X LN .
K,,,-;=CD(U +v ) (vcosy—usiny) (3.9b)
er
K,—=0 3.9¢
" (3.9¢)
w=0. (3.9d)

7" and 7" are the cross-shore and alongshore components of the surface stress in
equations (3.8a) and (3.8b). In (3.8¢c), Qp is the net upward flux of longwave radiation,
sensible and latent heat across the sea surface. y = 109 is a geostrophic inflow angle in
equations (2.9a) and (2.9b) (Weatherly, G. L, 1972). Table 1 provides constants used in

this study as well as other symbols in the model equations.




B. DOMAIN SIZE AND RESOLUTION

The domain of the model is a rectangular region extending from 359N to 450N
and 6° longitude off the west coast of the United States. This region extends
approximately 500 km offshore and it spans over 1000 km in the alongshore direction.
Point Conception marks the southern boundary of the study while Cape Mendocino is
located in the middle of the study area. The honizontal resolution of the model is 8 km in
the cross-shore direction and 17.5 km in the alongshore direction. This resolution should
allow realistic spatial resolution of mesoscale features in the CCS, which have typical
wavelengths of the order of 100 km (Breaker and Mooers, 1986). Variations in the
coastline and ocean depth are omitted in this process-oriented study to focus on the role of

wind forcing in the generation of eddies and filaments.

C. FINITE DIFFERENCE SCHEME AND TIM. STEPPING

A space staggered B-scheme which has u and v defined at one set of grid-points
and T, p, and p at another (Arakawa and Lamb, 1977, Batteen and Han, 1981) is used in
the horizontal. There are 10 layers in the vertical, separated by constant z-levels at depths
of 13, 46, 98, 182, 316, 529, 870, 1416, 2283 and 3656 m. The time stepping used
consists of a Matsuno time step followed by 10 leapfrog time steps and is continuously

repeated throughout the model run.

D. HEAT AND MOMENTUM DIFFUSION
Biharmonic lateral momentum and heat diffusion with the coefficients listed in

Table 1 are used in the model to allow the generation of mesoscale eddies. Laplacian
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lateral heat diffusion is not used since it can diminish the baroclinic signal associated with

mesoscale processes (Holiand and Batteen, 1986).

E. SURFACE THERMAL FORCING

The surface thermal forcing was highly simplified in this model in order to focus on
wind's role in generating thermal variability. The solar radiation at the sea surface, S,
was specified to be the mean summer CCS value from Nelson and Husby (1983). The
mean summer CCS value was used even though the study used climatological winds for all
seasons because during the summer upwelling season there will be a net heat gain due to
the cold upwelled water. Qp, the net longwave radiation was computed during model
experiments from standard bulk formulas using the summer CCS mean value of
alongshore wind, cloud cover, air temperature, relative humidity, and model-predicted sea
surface temperature (Haney ef al, 1978). The initial sea-surface temperature was chosen
so that the total heat flux across the sea surface, S, - Qg, equals zero. The only surface
heat flux forcing was developed in Qp as a result of wind-forced fluctuations in the sea
surface temperature. A more detailed discussion of this formulation can be found in

Batteen er al. (1989) and Haney (1985).

F. HORIZONTAL BOUNDARY CONDITIONS

The California coastline, the eastern boundary, is modeled as a straight vertical
wall. A no-slip condition is imposed on the tangential velocity.

The other three boundaries are open using a modified version of the radiation
boundary conditions of Camerlengo and O'Brien (1980). Forcing to the boundaries
caused unrealistic surface currents with no undercurrent in cases where the wind does not

have an alongshore component. To remedy this problem, we impose a band where there
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is no wind forcing (McCreary, 1981, Batteen ef al., 1989, McCreary er al., 1987). The
bands of no wind forcing are located approximately 100 km from the northern and
southern boundaries. This allows for the propagation of coastal Kelvin waves. A surface-
trapped coastal jet and a relatively realistic undercurrent are established by the alongshore

pressure gradient field generated by the Kelvin waves (Batteen ef al., 1989).

G. INITIAL CONDITIONS
An exponential temperature profile with a vertical length scale of h = 450 m was

the initial mean stratification. The form was:

T, =T,+VTe™, (3.10)

where Tg = 20C is the temperature at the bottom layer and AT = 139C is the increase in
temperature between the bottom and surface layer. This profile is considered to be

climatologically representative of the CCS (Blumberg and Mellor, 1987).

H. WIND DATA DESCRIPTION

The winds used to force the model are from the European Centre for Medium
Range Weather Forecasts (ECMWF) (Trenberth er al., 1990) and were provided by the
National Center for Atmospheric Research (NCAR). World-wide mean monthly wind
velocities were provided at 2.5 degree spacing for the years 1980 to 1989. Two
climatologies derived from 80 months and 120 months of data were also provided. Since
a comparison of the two climatologies showed no apparent contrast in our area of interest,
the 120-month climotology was chosen to be the representative winds for this study. The
data was linearly interpolated in both time and space to provide daily forcing at the

required grid points. The interpolated values are separated by approximately 8 km in the
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cross-shore direction and 17.5 km in the along-shore direction, consistent with the model
horizontal grid resolution. All the seasonal experiments used this 120-month climatolgical

wind as the base for which the averaging (explained below) was done.

L EXPERIMENTAL DESIGN
The first experiment is forced with a steady -830 cm s-1 southward wind. The
subsequent three time-varying cases broke the wind fields into different components to
identify the importance each of these components played in the development of eddies and
filaments. For the second and third experiments, the cross-shore component of the wind
field is set to zero. The alongshore component in the second and third experiment is then
averaged and applied to the model grid in the following manner:
e  varying in time but averaged spatially over the entire domain (second experiment),
and
e  varying in time and in the alongshore direction but averaged in the cross-shore
direction (third experiment).
In the final experiment, the full climatological wind field is used. All four experiments are

run for 360 days.

J. ENERGY ANALYSIS TECHNIQUE

The energy technique used in Batteen and Rutherford (1990) and Batteen e al.
(1992) will be used to analyze the generation and stability of the California Current
System, eddies and filaments. The following is a summary of the Batteen et al. (1992)

description of this technique.
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To gain an understanding of the energy transfers in the unstable flow, an energy
analysis based on that of Han (1975) and Semtner and Mintz (1977) is made The energy
calculations with Semtner and Mintz (1977) notation is used in the energy calculations:

a time average

()  time deviation

(")  horizontal space average
()" horizontal space deviation

The kinetic energy is calculated by:

hed 2
u +v
2

K= (3.11)

The time mean and time eddy kinetic energy are calculated, after reaching a quasi-steady

state, by:
X:'";"' (3.12)
k=X ';" i (3.13)
Available potential energy (P) is:
| /)
P=agl (T ) (=)' : 3.14
ag[z( )(a} ] (3.14)

This determines when a quasi-steady state is reached in order to collect statistics. The

temporal mean and eddy available potential energy are then calculated by:

- LTy
.P—ag[z(f)(y ] (3.15)
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| —— &, |
P'= [ (T)(-;) j (3.16)

Following Semtner and Mintz (1977), transfers between energy types are defined as:

{X - P}=-ag| Tv] (3.17)

[Pr5K)= ag[“ﬂ‘] (318)
{K-»K'}—v(Vovv +-§§'T) (3.19)

[— -\
{Popl= ag(T'Vo v'T® +[§) , (3.20)

Vertical velocity and advection terms calculated by the model are not stored Vertical
velocity and advection terms are recalculated in the same manner as in the model using
stored values of u, v and T as the input data. The recalculated energy transfers are
consistent with the initial calculations of vertical velocity and advection terms in the
model.

The energy transfer analysis is used to argue for the instability mechanism which
leads to the initial eddy generation by studying the quasi-steady energetic state prior 1o

eddy generation.
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Pa

Po

Table 3.1. VALUES OF CONSTANTS USED IN THE MODEL

VALUE

0.958 cal gm™! °K)!

1.225 x 1073

278.2°K

1.23x 1073 gmem’3

1.0276 gm an3

2.01 x 1074 °xy!
10

76 10° om
175108 em
4.5x 105 om
800 s
093x10% ¢!
980 em 5°}
2x1017 cmt 57!
2x101 7 emd 57}
0.5cmly!

03 cm2 5!

DEFINITION

specific heat of sea water

bottom drag coefficient

constant reference temperature
density of air

density of sea water at T,

thermal expansion coefficient
number of levels in vertical
cross-shore grid spacing

alongshore gnd spacing

total ocean depth

time step

mean Coriolis parameter
acceleration of gravity

biharmonic momentum diffusion coefficient
biharmonic heat diffusion coefficient
vertical eddy viscosity

vertical eddy conductivity
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IV. RESULTS OF WIND FORCING EXPERIMENTS

Experiment 1 studies the effects of steady, equatorward (upwelling-favorable)
winds in the CCS. Experiments 2 through 4 investigate the effecis of seasonally varying
* winds in the same region, using climatological monthly values that have been interpolated
to daily values. Experiment 2 uses temporally varying, spatially averaged winds, while
Experiment 3 uses winds with temporal variation and alongshore variability. In

Experiment 4 the full climatological, seasonally varying wind field is used.

A. EXPERIMENT 1

In Experiment 1 the model was forced with a steady -830 ¢cm s-! equatorward
wind. This wind forcing of 1 dyne cm-2 is the summer (June-August) average for the
modeled area (Batteen ¢f al,, 1989). Inertial oscillations of near-surface ocean currents
developed initially, as in Batteen er al. (1991). After a few days the oscillations were
damped, leaving quasi-steady offshore Ekman transport (not shown). By day 20 an
equatorward coastal jet developed with speeds of ~15 cm s-1 (Fig 4.1ac) Colder
surface temperatures also appeared near the coast (Fig. 4.1b). A poleward undercurrent is
also discernible at 182 m depth (Fig. 4.1d). The surface current flowed at ~25 cm s*1, and
extended ~35 km offshore (Fig. 4.1c), while the undercurrent, centered along the coast,
had weaker velocities of ~5 cm s-1 (Fig. 4.14).

Plots of the zonal velocity (Figs. 4.2a, b) show that eddies begin to form around
days 60 and 70 as evidenced by perturbations in the zonal velocity fields. (Since
menidional velocity plots tend to be dominated by the predominately meridional currents,
perturbations are more clearly seen in zonal rather than meridional velocity plots.) The

isotherms also show meanderings in the same region where the eddies are generated
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(Figs. 4.2c, d). As expected, eddies first formed in the poleward end of the region, as in
the B-plane experiment of Batteen er al. (1989). The vertical cross-section of menidicnal
velocity at day 90 (Fig. 4.3) shows that the surface equatorward current has its core at
~80 m depth with a speed of ~25 cm s~!, while the undercurrent develops below a depth
of ~240 m within ~25 km of the coast.

Both baroclinic and barotropic transfers (equations 3.18 and 3.19, respectively)
can contribute to the formation of eddies. Baroclinic instability draws its energy from the
vertical shear in the mean flow while barotropic instability receives energy from the
horizontal shear (Haltiner and Williams, 1980; Batteen ez al. 1989). Figure 4 4 shows that
although both baroclinic (Fig. 4.4a) and barotropic (Fig. 4.4b) instabilities play a key role
in the generation of eddies, barotropic instability is the dominant generation mechanism.
Plots of the surface velocity vectors superimposed on the isotherms (Fig. 4 5a-d)and the
meridional velocity contours (Fig. 4.6a-d) at 90 day intervals show how the meandering
current continues to grow in strength and to spin off isolated eddies. This strong
meandering current can produce eddies that have wavelengths up to ~ 200 km and that
can propagate at least ~ 200 km offshore (Figs. 4.5 and 4.6).

Although these results show a meandering current and eddies, it is very unlikely
that there will be steady strong equatorward (upwelling favorable) winds for 360 days,
since there are many periods of poleward winds and also wind relaxations in the CCS
region. Therefore, three more experiments with a time varying wind, were conducted in
order to better understand what critical unsteady wind forcing elements are needed for the

formation and maintenance of currents and eddies.
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B. EXPERIMENT2

The second experiment utilized the alongshore-component of the temporally
averaged ECMWF winds. The seasonal cycle of this wind field is plotted in Figs. 4.7 and
4.8. At the beginning of the year, the wind forcing was very weak, and the winds
remained weak until day 135. From days 135 to 225, the wind was equatorward and
continued to grow in strength. The wind then decreased in strength until it was nearly
zero again at day 360.

The model simulation results show an equatorward coastal jet and colder surface
temperatures near the coast by day 180 (Fig. 4.9b). The surface current flowed at ~10 cm
s-1, and extended ~25 km offshore, while the undercurrent had weaker velocities of ~1.5
cm s-1 and was centered along the coast at ~120 m depth (Fig. 4.10).

The isotherms show meanderings in the same region where the eddies are
generated (Figs. 49 and 4.10). Again the eddies first formed in the poleward end of the
region, as expected. Fig. 4.12 shows that both baroclinic and barotropic instabilities
contribute to the generation of eddies, with the barotropic instability being the dominant
mechanism. The plots of the surface velocity vectors superimposed on the isotherms at
selected days between 130 and 270 show how the meandering current continues to grow
in strength and to spin off isolated eddies (Figs. 49 and 4.10). As expected, this
meandering current weakens and dissipates as the seasonal cycle of the temporal wind
weakens.

With this non-spatially varying seasonal cycle, currents and eddies are generated
much later than with the ideal upwelling favorable winds of the first experiment. The

major portion of activity happened between day 135 and day 290 and only showed very
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weak upwelling and little eddy activity (Figs. 4.9-4.10). The eddies also only propagated
to ~ 100 km offshore.

C. EXPERIMENT3

The third experiment uses the alongshore component of the time-dependent wind
forcing with spatial variability in latitude The wind forcing is divergent at the beginning of
the year with poleward winds north of 40° N latitude and equatorward winds south of 40©
N latitude. The wind stress shifts to being equatorward everywhere by day 135,
intensifying from days 135 to 225, and then splits again by day 315 (Figs. 4.13 and 4.14).

The ocean response is evident by day 70 when an equatorward coastal jet forms
(not shown). Eddies form by days 240 and 260 (Figs. 4A15a',b). Meanders in the
isotherms in the areas of these eddies are also evident (Figs. 4.15¢,d). The cross-section
of the meridional velocity at day 260 (Fig. 4.16) shows an equatorward surface current
with speeds of ~35 cm s-! and a poleward undercurrent with its core located 40 km
offshore and at a depth of 350 m.

In this experiment, there is a competition between the B-plane effect, which will
cause eddies to form in the poleward end of the domain, and the continuous and stronger
equatorward wind forcing in the southern portion of the domain. This causes eddies to
form throughout the region so that by day 300 the eddies encompass the area from the
northem boundary to the southern boundary of the domain (Figs. 4.17a,c). Day 360
shows the strong meandering current with large eddies imbedded in it (Figs. 4.17b,d).

Figures 4.18a,b show that while both baroclinic and barotropic instabilities are
eddy generating mechanisms in the poleward portion of the domain, it is primarily the
barotropic instability that contributes to the generation of eddies in the southermn portion of

the domain where the wind is predominately equatorward. The wind forcing in this
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experiment produced larger eddies (that propagate at least ~ 150 km from shore) and eddy
velocities than were seen in the previous experiment, which is more consistent with

available observations.

D. EXPERIMENT 4

The final experiment uses full climatological wind forcing (Figs. 4.19 and 4.20).
Again the divergence in the winds at 400 N is evident in the beginning of the year. By day
135, the winds over the entire domain have an equatorward component and by day 225
the winds are predominately equatorward everywhere and strongest in magnitude. After
day 225 the winds become less intense and by day 360, north of 409 N the wind becomes
poleward again.

As in the previous cases, inertial oscillations of near-surface ocean currents
developed initially. After a few days these observations were damped, leaving quasi-
steady offshore Ekman transport (not shown). By day 20 an equatorward coastal jet
developed(not shown). At day 110 the surface current flowed at ~40 c¢m s-! and
extended ~35 km offshore, while a weak undercurrent was evident (Fig. 4.21). The
meridional velocity cross-section at day 180 (Fig. 4.22) shows a strong equatorward
surface jet centered ~50 km offshore with speeds of ~60 cm s-l. The poleward
undercurrent is located at ~360 m depth and ~40 km offshore.

Plots of the zonal velocity (Fig. 4.23d) show that eddies begin to form around day
260 as evidenced by perturbations in the zonal velocity fields. As expected, the isotherms
also show meanderings in the same region where the eddies are generated (Fig 4.23c).
The eddies again formed initially in the poleward end of the region.

Figure 4.24 shows that, although both baroclinic (Fig. 4.24a) and barotropic (Fig.

4.24b) instabilities play a key role in the generation of eddies, barotropic instability is the
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dominant generation mechanism. Days 300 to 360 (Figs. 425-4.27) show the current
becoming stronger with the eddies continuing to grow and to separate from the coast
The speeds of the currents and eddies reach ~ 65-85 cm s~ with wavelengths of ~ 300 km
and can propagate to ~ 350 km offshore. This case gives results that are more consistent
with available observations than was obtained in any of the previous cases. However, the

speed and depth of the undercurrent are still not quite in agreement with observations
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interval is 0.50 C. The temperature decreases oward the coast.
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Figure {.5 b) Experiment 1: Surface velocity vectors superimposed on lemperatures at day 180. The
contour interval is 0.5 C. The temperature decreases toward the coast,
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Figure 4.5 ¢) Experiment 1: Surface velocit super
’ . : y veclors supenmposed on temperatures at day 270.
contour interval is 0.50 C. The iemperature decreases toward the coast. P Y270 The
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Figure 4.5 d)Expcriment 1: Surface velocity vectors superimposed on lemperatures at day 360,
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The temperature decreases woward the coast.
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Figure 4.6 a ) Experiment 1: Surface meridional velocities at day 90. The contour interval is 10 cm s™*.
The dashed lines indicate southward velocities. Closed contours show the locations of eddies.
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Figure 4.6 b ) Experiment 1: Surface meridional velocities at day 180. The contour interval is 10 cm st
The dashed lines indicate southward velocities. Closed contours show the locations of eddies.
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Figure 4.6 c) Experiment 1. Surface meridional velocities at day 270. The contour interval is 10 cm s™*.
The dashed lines indicate southward velocities. Closed contours show the locations of eddies.
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Figure 4.6 d) Experiment 1: Surface meridional velocities at day 360. The contour interval is 10 cm s°1.
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Figure 4.7a) Experiment 2: Wind forcing inm s! at day 45.
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Figure 4.7 b) Experiment 2: Wind forcing inm s™ at day 90.
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Figure 4.7 ¢) Experiment 2: Wind forcing inm s-Ta day 135.
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Figure 4.7 d) Experiment 2: Wind forcing in m sTat day 180.
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Figure 4.8 b) Experiment 2: Wind forcing in m s'lal day 270.
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Figure 4.8 d) Experiment 2: Wind forcing in m s°1 at day 360.

48




Temp and velocitly vector sl model day 1300
1032.5 1 ! B SRS L
{
{
{
!
!
s
]
I
875.0 — —
717.5 - 14 L
£
~560.0 — |
©
]
3 !
S \
492 .5 — —
80 cm/s
MAXTHUM VECTOR
245 .0 — L
8.5 l : T T T
-200.0 -166.7 -133.3 -108.¢ -66.7 -33.3 Q2.@
Distance off shore (km)

Figure 4.9 a) Experiment 2: Velocity vectors superimposed on surface temperatures at day 130. The
contour interval is 0.5° C. The temperature decreases toward the coast.
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Figure 4.9 b) Experiment 2: Velocity vectors superimposed on surface 1emperatures at day 180. The
contour interval is 0.59 C. The temperature decreases toward the coast.
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Figure 4.9 ¢) Experiment 2: Velocity vectors superimposed on surface lemperatares a1 day 200. The
contour interval is 0.59 C. The temperature decreases toward the coast.
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Figure 4.9 d) Experiment 2: Velocity vectors superimposed on surface temperatures at day 210. The
contour interval is 0.50 C. The temperature decreases toward the coast.
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Figure 4.10 a) Experiment 2: Velocity vectors superimposed on surface temperatures at day 250
contour interval is 0.59 C. The temperature decreases toward the coast.
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Figure 4.10 b) Experiment 2: Velocity vectors superimposed on surface temperatures at day 270. The
contour interval is 0.5¢ C. The temperature decreases toward the coast.
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Figure 4.10 ¢) Experiment 2: Velocity vectors superimposed on surface lemperatures at day 280. The
contour interval is 0.5 C. The temperature decreases toward the coast.
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Figure 4.10 d) Experiment 2: Velocity vectors superimposed on surface temperatures at day 290.
contour interval is 0.5¢ C.

The temperature decreases toward the coast.
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Figure 4.11 Experiment 2: Cross-section at 40° N latitude of meridional velocities at day 210. The
contour interval is 1.1 ecm s*). The dashed lines indicate southward velocities and show the surface
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Figure 4.13a) Experiment 3: Wind forcing in m s™1 at day 45.
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Figure 4.13 ¢) Experiment 3: Wind forcing in m s™1 at day 135.
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Figure 4.13 d) Experiment 3: Wind forcing in m sTal day 180.
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Figure 4.14 a) Experiment 3; Wind forcing inm s°1 at day 225,
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Figure 4.14 b) Experiment 3: Wind forcing iu m s at day 270.
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Figure 4.14 ¢) Experiment 3: Wind forcing in m s*! at day 315.
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Figure 4.15 a) Experiment 3: Surface Zonal velocities at day 240. The contour interval is 10 cm s™). The
dashed lines indicale wesiward velocities. Closed contours show the locations of eddies.
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Figure 4.15 b) Experiment 3:  Surface Zonal velocities at day 260. The contour interval is 10 cm s-L.
The dashed lines indicate westward velocities. Closed contours show the locations of eddies.
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Figure 4.15 ¢) Experiment 3: Surface temperatures at day 240. The contour interval is 19 C. The
temperature decreases toward the coast.
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temperature decreases toward the coast.
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Figure 4.16 Experiment 3: Cross-section at 40° N latitude of meridional velocities at day 260. The
contour interval is 1.1 cm s}, The dashed lin~s indicate southward velocities and show the surface
equatorward current. The solid lines indicate northward flow and show the poleward undercurrent.
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Figure 4.17 b) Experiment 3: Surface velocity vectors superimposed on temperatures at day 360. The
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Figure 4.21 a) Experiment 4: Surface velocity vectors superimposed on temperatures at day 110. The
contour interval 1s 0.59 C. The temperature decreases toward the coast.
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Figure 4.21 b) Experiment 4: Cross-section at 409 N latitude of meridional velocities at day 110, The

contour interval is 1.1 cm sl

The dashed lines indicate southward velocities and show the surface

equatorward current. The solid lines indicate northward flow and show the poleward undercurrent.
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Figure 4.22 Experiment 4: Cross-section at 40° N latitude of meridional velocities at day 180. The
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temperature decreases toward the coast.
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Figure 4.24 Experiment 4 Transfers of energy (as defined in equations 3.18 and 3.19) from: a) P to K’
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Figure 4.25 a) Experiment 4: Surface velocity vectors superimposed on temperatures at day 300. The
contour interval is 0.59 C. The temperature decreases toward the coast.

93




Distance off shore (km)
-512.0 -426.7 -341 .3 -256.08 -178.7

1832.5 ! L1
A )
H
L]
.I
.
4
H
875.8 - )
!
P ’
[ S
')
oy
L
4 "y
4 .“.
717.5 N
.
‘-
1]
¥
4
?
w— !
& ; »
560 .8 — ! A RO
[ ] I 4 H .
b -] g ot
g H A : ¢
¢ PR T B
k| ! v, .- O
[ ¢ 3
: N
L] A} ] ) ’
' n‘ \~l—.'
N L]
4982 .5 — . A L o
M , - e
) P .
[}
+
'
1]
"
. *
245 .9 ' -25 .
- . i [ N
. IREERR 4 T3
- ey Ti\|e
! ’ A
] ] HEE T
. 1)
! ' et L
1) ' "'. N
N [ ik a) !;..l
87.5 1 T 1

CONTOUR TRON 108 1{': 7 ¥ 20
North-South vel contour at model day 300.0

Figure 4.25 b) Experiment 4: Day 300 Meridional velocities. The contour interval is 20 cm s The
dashed lines indicate southward velocilies.

94




1032.5

Distance off shore (km)

|

i

-512.@ -426_ 7 -341.3 -256.0 -178.7 -85.3 @ @

1

875.0 —

717.5

Latitude (Jom)
nN
o
bod
2
]

402 .5 —

245 .0

87.5

14'/Z_
O
0

¢
[

T

—

1

|
CONTOUR TROM 10 T0 13 BY ¢

Temperature contour sl model dsy 300.0

Figure 4.25 ¢) Experiment 4: Surface temperatures at day 300. The contour interval is

iemperalure decreases toward the coast.

95

19 C. The




Distance off sbore (km)
-512.0 -426.7 -341,3 -256.06 -178.7 -85.3 ©.8

1932.5 ! i

875.0 —

717.5 —

Latitude (km)
u
*
1Y
=
|

482.5 —

245 .8 —

East-West vel conlour at model day 300.0

Figure 4.25 d) Experiment 4: Surface Zonal velocities at day 300. The contour interval is 10 cm s'1. The
dashed lines indicate westward velocities. Closed contours show the locations of eddies.
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V. SUMMARY AND RECOMMENDATIONS

A. SUMMARY

In all four cases, currents and eddies were generated which shows the significant
role wind forcing plays in the generation of these features. Table 5.1 shows a summary
comparing the model results with available observations. The results of Experiment 1 are
fair except for the weak surface current and undercurrent. Though Experiment 1 shows
mostly reasonable results compared with observations, it is not likely that there would be
360 days of strong equatorward (upwelling favorable) winds. Experiment 2 showed the
least reasonable results compared with observations. The coastal jet and undercurrent
were much weaker and smaller than observations in Experiment 2. 1In all four
experiments, the undercurrent was wider than seen in observations. A possible reason the
undercurrent is wider than seen in observations may be due to not having topography
representing the continental shelf in the model. Experiment 3 showed reasonable results
with the exception of a very wide undercurrent and small eddy velocities. The results that
were closest to observations were from Experiment 4. With the full climatological winds,
the model was able to produce a coastal jet and eddy velocities of 85 cm s*1. The
conclusion obtained from the results of the four experiments is that both temporal and
spatial variability in wind forcing in eastern boundary current regions are critical elements

in the formation and maintenance of currents and eddies.

B. RECOMMENDATIONS
Future studies should look at the role of inter-annual variability in the wind
forcing. By allowing the model to run for ten years (the 1980-1989 data set is available),

it may be possible to detect what roles anomalous years such as E/ Nino have on the
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currents and eddies in the CCS. Longer model simulations would also help to determine
the life span of the larger eddies.

Experiments to include the topography and an irregular coastline to study the role
of these features in the maintenance of currents and eddies also may make it possible to
obtain a more reasonable undercurrent. Nevertheless, since both currents and eddies have
been generated and maintained in these wind forcing experiments, we must conclude that
wind forcing is a critical element in the formation and maintenance of these features in the

CCS.
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Table 5.1 INSTANTANEOUS COMPARISON OF EXPERIMENTS (EXP ) WITH OBSERVATIONS

(OBS.) OF THE CCS.
Obs. Exp. Exp. Exp.  Exp
1 2 3 4
A. Maximum coastal jet velocity (cm s~1) 30-100 (1,2,3,4) 25 5 35 85
B. Offshore location of coastal jet (km) 25-35(2.3) 25-35 10-15 25-35 3060
C. Offshore extent of coastal jet (km) >40 (1,2,3) 100 20 40 100
D. Depth of inshore coastal jet (m) 90-150 (2.3) 80 60 80 180
E. Maximum undercurrent velocity (cm s°1) 5-15(2.3) 5 1.5 S 5
F Offshore location of undercurrent axis (km) 10-40 (2,3) 25 20 40 40
G. Maximum width of undercurrent (km) 10-20 (2.3) 20 25 80 40
H. Depth of undercurrent axis (m) 200-300 (2) 280 100 350 360
I. Maximum zonal eddy diameter (km) 10->100 (2,5,6,7) 145 40 120 130
J. Maximum zonal eddy velocity (cm s 50-100 (1,2,346,7) 25 15 35 85
References: (1) Kosro and Huyer (1986)
(2) Huver and Kosro (1987)
(3) Kosro (1987)
(4) Davis (1985)

(5) Mooers and Robinson (1984)
(6) Brink and Cowles (1991)
(7) Brink et al. (1991)
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